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Abstract

Background: Small cell lung cancer (SCLC) is an aggressive neuroendocrine lung cancer. SCLC progression and
treatment resistance involve epigenetic processes. However, links between SCLC DNA methylation and drug
response remain unclear. We performed an epigenome-wide study of 66 human SCLC cell lines using the Illumina
Infinium MethylationEPIC BeadChip array. Correlations of SCLC DNA methylation and gene expression with in vitro
response to 526 antitumor agents were examined.

Results: We found multiple significant correlations between DNA methylation and chemosensitivity. A potentially important
association was observed for TREX1, which encodes the 3′ exonuclease I that serves as a STING antagonist in the regulation
of a cytosolic DNA-sensing pathway. Increased methylation and low expression of TREX1 were associated with the sensitivity
to Aurora kinase inhibitors AZD-1152, SCH-1473759, SNS-314, and TAK-901; the CDK inhibitor R-547; the Vertex ATR inhibitor
Cpd 45; and the mitotic spindle disruptor vinorelbine. Compared with cell lines of other cancer types, TREX1 had low mRNA
expression and increased upstream region methylation in SCLC, suggesting a possible relationship with SCLC sensitivity to
Aurora kinase inhibitors.
We also identified multiple additional correlations indicative of potential mechanisms of chemosensitivity. Methylation of the
3′UTR of CEP350 and MLPH, involved in centrosome machinery and microtubule tracking, respectively, was associated with
response to Aurora kinase inhibitors and other agents. EPAS1methylation was associated with response to Aurora kinase
inhibitors, a PLK-1 inhibitor and a Bcl-2 inhibitor. KDM1Amethylation was associated with PLK-1 inhibitors and a KSP inhibitor.
Increased promoter methylation of SLFN11 was correlated with resistance to DNA damaging agents, as a result of low or no
SLFN11 expression. The 5′ UTR of the epigenetic modifier EZH2 was associated with response to Aurora kinase inhibitors and
a FGFR inhibitor. Methylation and expression of YAP1 were correlated with response to an mTOR inhibitor. Among non-
neuroendocrine markers, EPHA2 was associated with response to Aurora kinase inhibitors and a PLK-1 inhibitor and CD151
with Bcl-2 inhibitors.
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(Continued from previous page)

Conclusions: Multiple associations indicate potential epigenetic mechanisms affecting SCLC response to chemotherapy and
suggest targets for combination therapies. While many correlations were not specific to SCLC lineages, several lineage
markers were associated with specific agents.
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Introduction
Small cell lung cancer (SCLC) is a highly aggressive neu-
roendocrine tumor prone to early metastasis, short sur-
vival, and limited options for effective treatment [1–3].
Despite an unmet need to identify new therapies, pro-
gress in SCLC treatment has been hindered by rapidly
acquired resistance to therapy resulting in limited and
transient response to second and third line chemothera-
peutic and immunotherapeutic agents [2]. Recently, the
US FDA approved the immunotherapy drugs atezolizu-
mab, pembrolizumab, and nivolumab for the treatment
of recurrent SCLC [4].

Genome studies have identified frequent somatic mo-
lecular alterations in SCLC cells including functional in-
activation of TP53, RB1, and, less commonly,PTEN
tumor suppressor genes; copy number amplification of
MYC family genesMYC, MYCL1, andMYCN; mutations
in the EP300, CREBBP, andKMT2A (MLL) and KMT2D
(MLL2) genes encoding histone-modifying proteins; in-
activating mutations inNOTCH family genes; and com-
mon loss of genomic regions containingFHIT and
CDKN2A genes [2, 5–8]. Other genomic alterations
found in SCLC specimens include somatic rearrange-
ments of theTP73 gene and overexpression ofCCND1,
mutations in SLIT2and EPHA7, and focal amplifications
of FGFR1[5, 6]. Smoking-associated signatures in SCLC
tumors have also been reported [9, 10].

Recent molecular studies have established that SCLC
lineages fall into a number of distinct subtypes, currently
referred to as SCLC-A, SCLC-N, SCLC-Y, and SCLC-P,
based on their differences in gene and protein expression
of transcriptional molecular neuroendocrine, non-
neuroendocrine, or tuft cell-like lineage regulators ASCL1,
NEUROD1, INSM1, YAP1, and POU2F3, and of their
downstream molecular targets [2]. Whether these SCLC
subtypes respond differently to specific treatments and
whether patient tumors may represent a heterogeneous
mix of SCLC lineages remains a subject of active investi-
gation [2].

There is a growing understanding that many changes as-
sociated with SCLC carcinogenesis may be driven by epi-
genetic processes. Genes encoding several epigenetic
factors including histone acetyltransferases EP300 and
CREBBP, and histone methyltransferases KMT2A and
KMT2D are frequently mutated in SCLC tumors [2, 5, 6,
11]. High expression of another histone methyltransferase

gene,EZH2, is a distinct feature of SCLC when compared
to normal lung tissue or other cancer categories [11]. The
transcriptional master regulator,POU2F3, which defines
the tuft cell-like SCLC lineage [2, 12, 13], is epigenetically
silenced in cervical cancer via hypermethylation of the
POU2F3 promoter [14], suggesting the possibility that
DNA methylation-mediated regulatory mechanisms could
play a role in SCLC development and progression. A sur-
vey of global methylation patterns in primary SCLC tu-
mors and SCLC cell lines identified 73 potential gene
targets enriched for binding sites of cell fate-specifying
transcriptional factors [15].

Despite growing evidence for the role of epigenetic
factors in SCLC cancer, understanding their influence
on tumor response to treatment remains limited. Earlier
studies of other cancer histologies have identified thera-
peutically relevant DNA methylation biomarkers in the
promoter regions of MGMT, increased methylation of
which is beneficial for the response to alkylating thera-
peutic agents and ionizing radiation in glioblastoma and
colorectal cancer, and ofSLFN11, methylation of which
has been associated with resistance to DNA damaging
agents in a variety of cancer categories [16–22]. Insight
into epigenetic modulation of SCLC response to DNA
damaging agents was provided by the discovery of epi-
genetic silencing ofSLFN11by EZH2 in the course of
cisplatin-etoposide therapy, which may lead to treatment
resistance or chemo-sensitive relapse [23]. Unfortu-
nately, the role of epigenetic mechanisms in response to
other agents and the effect of various epigenetic alter-
ations on drug treatment response in SCLC remain
largely unknown.

To provide insight into epigenetic factors which may influ-
ence the response of SCLC to treatment, an epigenome-wide
DNA methylation analysis was performed. Methylation data
were analyzed to determine how epigenomic states of gene
regions, individual probes, and genes were associated with
SCLC response to FDA-approved oncology drugs and about
400 investigational agents. These epigenome analyses utilized
drug response and transcriptional profiling data obtained in
our earlier study [24], in which we identified a number of
gene transcripts and miRNAs associated with SCLC response
to treatment. In the current report, we describe the use of
high-density DNA methylation measures to identify epige-
nomic regions and gene targets that were strongly associated
with response to a variety of therapeutic agents.
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Methods
Drug response measures
We analyzed drug response measures obtained earlier in
the in vitro screen of 526 FDA-approved and investiga-
tional agents using SCLC cell lines [24]. Sixty-six SCLC
cell lines had both drug response information and DNA
methylation measures and were included in the analysis
of Spearman correlation between probe or gene region
methylation levels and median values of the log(IC50)
measures of drug response among cell line replicates
(Supplementary Table1). Among 526 agents, 412 drugs
showed variability of response among the 66 SCLC cell
lines and were included in association analysis.

Measurement of SCLC cell growth and drug response
measures and the steps for quality control (QC) were de-
scribed in detail previously [24]. Briefly, each agent was
tested at nine concentrations (10� M to 1.5 nM, with
DMSO concentration of 0.25%), after a 96-h incubation
with the cells. The statistical validity of the drug re-
sponse dataset was evaluated by calculating theZ’ factor
for each plate in the assay, withZ’ > 0.5 considered to
be a high-quality assay. Concentration response data
were fit with a 4-parameter curve, and median IC50
values for each agent were computed among cell line
replicates.

Methylation data processing
Methylation measurements for all cell lines were gener-
ated in a single batch using Illumina Infinium Methyla-
tionEPIC BeadChip (Illumina, Inc). The absence of
batch effects was confirmed by comparing clustering of
SCLC based on methylation data with that based on
gene expression data.

Methylation data were normalized, and beta and de-
tection p values were calculated using the minfi package
[25] using default parameters, resulting in 866,091
methylation probe measurements. Methylation probe
beta-values for individual cell lines with detectionp
values� 10Š3 and the entire 1427 probes with median
detection p � 10Š6 were excluded from analysis. Probes
overlapping with single nucleotide polymorphisms
(SNPs) were filtered out according to the list of probe
masking recommendations of Zhou et al. [26, 27]. The
final methylation dataset used in correlation analysis
with drug response and with gene expression had
methylation beta-values for 760,637 probes that passed
all filtering.

Epigenome-wide analysis of association of DNA
methylation with chemosensitivity
In order to compute gene region-averaged methylation
beta-values for the Infinium MethylationEPIC BeadChip
dataset, we developed an R program which followed the
algorithm which had previously been developed by other

authors for the IMA software package [28] for the ana-
lysis of Illumina 450K Infinium methylation array data.
Briefly, we used the Infinium MethylationEPIC Bead-
Chip annotation of each probe [29] according to the
UCSC genome browser data to compute gene region-
averaged methylation values for each of the following
gene regions: TSS1500 (200–1500 bases upstream of the
transcriptional start site, or TSS), TSS200 (0–200 bases
upstream of the TSS), 5�UTR (within the 5� untranslated
region, between the TSS and the ATG start site), first
exon, gene body (between the ATG start site and the
stop codon), and 3�UTR (within the 3� untranslated re-
gion, between the stop codon and poly A signal). Methy-
lation of different gene regions was considered
separately in association analyses and was not combined.
The probes annotated as belonging to more than one re-
gion and/or more than one gene were included in calcu-
lation of average methylation values of each of their
respective annotated gene regions. Statistical analysis
was performed using the R environment v. 3.5.3. The
resulting methylation values were computed for 108,795
regions belonging to 26,239 genes, transcripts, and
miRNA listed in the Infinium MethylationEPIC Bead-
Chip manifest annotation [29]. Chromosomal regions
(cytoband) of each probe were identified according to
the UCSC genome annotation database for the hg19
(GRCh37) assembly of the human genome based on
probe coordinates in the Infinium MethylationEPIC
BeadChip annotation [30].

Spearman correlation analysis of methylation measures
with log(IC50) was performed for methylation beta-
values of each individual methylation probe, and also for
methylation values averaged among the probes within
each of the six gene regions (TSS1500, TSS200, 5� UTR,
first exon, gene body, and 3� UTR). Sixty-six SCLC cell
lines, which had both drug response data and methyla-
tion measures, were included in correlation analysis. All
analyses described in this report included only SCLC cell
lines and did not include NSCLC or mesothelioma cell
lines. Significance of correlation of methylation of gene
regions with drug response was evaluated using the
Benjamini-Hochberg adjustment procedure for false dis-
covery rate (FDR) [17] using all p values from correl-
ation tests of all 412 drug agents with variable drug
response and 108,795 gene regions. For individual
methylation probes, we used a fixed threshold ofp <
9.42 × 10Š8 for a single Illumina Infinium MethylationE-
PIC BeadChip array methylation probe, according to re-
cently published recommendations [31]. In addition, we
also compiled a broader list of top genes associated with
drug response by combining the probes satisfying a
more liberal threshold ofp < 5 × 10Š7, in an analogy
with previously reported criteria of 10Š6 for Illumina
450K array which had fewer probes than the Illumina
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Infinium MethylationEPIC BeadChip array [32]. We
refer to the FDR-adjustedp values aspFDR and the ori-
ginal p values prior to FDR adjustment aspO. Special at-
tention was paid to the significant associations involving
the upstream gene regions, which are most likely to con-
tain the promoter regions and regulatory regions affect-
ing gene expression and to individual probes located in
the upstream gene regions.

The overlap between top results for different agents
and genes was visualized using Venn diagrams which
were constructed with the help of the public online ver-
sion of DisplayR [33].

Association of methylation of candidate genes with
selected antitumor agents
In addition to epigenome-wide analysis of association of
SCLC DNA methylation with drug response, we also fo-
cused more closely on possible epigenetic mechanisms
of response to 44 anticancer agents (Supplementary
Table 2). This list included agents that exhibited higher
efficacy in subgroups of SCLC cell lines in the in vitro
single agent screen, as well as agents with potential
promise for activity against SCLC based on in vitro or
preclinical results from other studies or based on their
inclusion in SCLC clinical trials [24]. We examined asso-
ciation of log(IC50) of these agents with methylation of
individual probes and gene regions of 78 genes repre-
senting drug-specific targets and 48 additional genes in-
volved in drug target pathways (Supplementary Table2).
In addition, we analyzed association of methylation of
log(IC50) of each of the 44 agents with methylation of
individual probes and gene regions of 159 protein-
coding genes that included genes with relevance to
SCLC lineage determination; SCLC lineage markers;
genes that carry frequent mutations or genome alter-
ations in SCLC; genes which are commonly inactivated,
overexpressed, or epigenetically modified in SCLC tu-
mors or in specific SCLC subtypes; as well as genes pre-
viously reported as being involved in pathways leading
to SCLC pathogenesis; or those suggested as being rele-
vant to SCLC response to chemotherapy [3, 5, 11, 13,
15, 24, 34–39]. The list of these genes is provided in the
legend to Supplementary Table2. Each candidate gene
was represented by multiple probes and up to six gene
regions (TSS1500, TSS200, 5�UTR, first exon, gene
body, and 3�UTR), which were analyzed independently
from each other. The resulting correlationp values were
FDR adjusted by combining the results for all 44 agents,
separately for 10,515 methylation probes in or near the
candidate genes and for 1376 gene regions in candidate
genes. The adjustment for multiple testing and interpret-
ation of the significance of the results derived from the
analysis of candidate genes and regions were done separ-
ately and independently from the adjustment for

multiple testing and interpretation of significance in the
analysis at the epigenome-wide level, described above.
The results obtained using these two approaches were
presented separately.

Association of DNA methylation with gene and miRNA
expression and correlation of transcripts with drug
response
We examined how association of SCLC DNA methylation
of individual probes and gene regions with drug response
may be related to expression of genes and miRNAs lo-
cated in the same genome regions. For this purpose, we
used gene expression and miRNA measurements gener-
ated and processed by an earlier study of our group [24],
which generated transcript expression data using Affyme-
trix GeneChip®Human Exon 1.0 ST Arrays (NCBI GEO
accession number GSE73160) and NanoString miRNA ex-
pression measurements (NCBI GEO accession
GSE73161). Experimental and computational procedures
for mRNA and miRNA data collection, processing, QC,
data normalization, and adjustment for batch effects were
reported previously [24, 38]. We used mRNA expression
measures normalized using Robust Multi-Array Average
(RMA) and summarized at the whole transcript level
using AROMA [40]; we also utilized miRNA data which
were normalized and log2 + 1 transformed [24]. Expres-
sion data for the total of 18,690 transcripts and 800 miR-
NAs were adjusted separately for batch effects using the
ComBat function of the sva package [41]. The validity of
adjustment was confirmed by hierarchical sample cluster-
ing using the hclust function of R v. 3.3.0. Pearson correl-
ation was used to evaluate association of log2-transformed
normalized expression values of each transcript and each
miRNA with log(IC50) of each drug agent. In addition, we
used Spearman correlation (Supplementary Table1) to
examine how the methylation beta-values of each of the
top methylation probes and average methylation beta-
values of gene regions associated with drug response were
correlated with log2-transformed normalized expression
measures of genes and miRNAs located in the same gen-
ome regions, based on Illumina Infinium MethylationE-
PIC BeadChip microarray annotation according to the
UCSC genome browser data. Here and below,ρ stands for
Spearman correlation coefficient andr stands for Pearson
correlation coefficient.

Copy number data
In cases when DNA methylation directly affects gene ex-
pression without copy number changes, a negative asso-
ciation between DNA methylation measures, most
commonly in the upstream gene region, and gene ex-
pression may be expected [42]. Gene copy number gain
commonly results in its overexpression, whereas copy
number loss could lead to lower expression levels. Copy
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number events have been reported to result in positive
or negative correlations between DNA methylation and
gene expression measures depending on the probe loca-
tion, with positive correlations more common in the
gene body [42]. To examine possible causes of positive
associations between DNA methylation and gene expres-
sion, we verified copy number information from the
Cancer Cell Line Encyclopedia (CCLE) resource at the
Broad Institute [43, 44] for selected genes in which one
or more probes and/or gene regions were significantly
associated with drug response in our data, and the same
probes and/or gene regions were strongly positively cor-
related with gene expression values. Thirty-three SCLC
cell lines with available methylation, transcript expres-
sion, miRNA expression, and drug response measure-
ments in our dataset also had copy number data
available from CCLE. Gene level copy number data had
been generated by the CCLE Consortium using Affyme-
trix 6.0 SNP arrays, with segmentation of normalized
log2 ratios of the copy number estimates performed
using the circular binary segmentation algorithm [43,
44].

Analysis of association of TREX1 expression and
methylation with drug response using data from other
resources
Due to the absence ofTREX1gene expression measure-
ments among the transcript clusters derived from the
Affymetrix GeneChip®Human Exon 1.0 ST Array, for
this gene we used Affymetrix Human Genome U133
Plus 2.0 microarray measurements (probe 34689_at)
available from the CCLE legacy portal [22, 45] for the 36
cell lines that were included both in our dataset and in
the CCLE data. These microarray measures had an ex-
cellent correlation with TREX1 RNA-seq expression
measurements available from CCLE [43, 44] (Spearman
correlation coefficientρ � 0.9135, Pearsonr � 0.9041,p
� 3.80 × 10Š20 for all tests in SCLC cell lines and across
cancer categories).

For validation of drug sensitivity associations with
TREX1methylation and expression, we analyzed correla-
tions of molecular measurements with drug response in
40 SCLC cell lines that had drug sensitivity data avail-
able from the Genomics of Drug Sensitivity in Cancer
(GDSC) dataset [46, 47] and TREX1 DNA methylation
and gene expression measures available from CCLE. The
independent TREX1 methylation dataset in CCLE was
generated using reduced representation bisulfite sequen-
cing (RRBS). These data included theTREX1promoter
region within 1 kb upstream of the TSS, promoter CpG
clusters, and promoter CpG islands, as provided by the
CCLE project [43] and described in detail in a recent re-
port [44]. For TREX1gene expression measures, we used
CCLE Affymetrix Human Genome U133 Plus 2.0

microarray data (probe 34689_at) [22, 45]. Drug sensitiv-
ity measurements (GDSC1 and GDSC2 datasets) were
obtained from the Genomics of Drug Sensitivity in Can-
cer (GDSC) resource [46, 47].

Association of methylation and gene expression with
drug response in relation to SCLC lineage classification
To examine whether patterns of DNA methylation and
transcript expression that were significantly correlated
with drug response were also associated with SCLC
lineage subgroups, we analyzed Spearman and Pearson
correlation of DNA methylation of individual probes
and gene regions with expression of six lineage SCLC
markers,ASCL1, ASCL2, NEUROD1, INSM1, YAP1, and
POU2F3[2, 48]. We also used hierarchical clustering of
SCLC cell lines based on these six lineage markers to
examine whether patterns of DNA methylation and gene
expression in the genes of interest were different among
SCLC clusters. Clustering of SCLC cell lines according
to their lineage marker expression was performed using
the •averageŽ (UPGMA) option of the hclust command
in the R environment based on Euclidian distances, with
subsequent annotation of SCLC cell line cluster assign-
ments according to a previous report [2] when such an-
notation was available.

Results
Below, we first present the results of the epigenome-
wide association analysis of individual probes and gene
regions with all agents. We discuss the strongest associa-
tions of methylation of individual probes with drug re-
sponse. We further discuss whether those associations
were also in agreement with the correlations of methyla-
tion of regions of the same genes with drug response
and whether such associations could be explained by the
effect of DNA methylation on gene expression. We also
highlight some of the top correlations of gene regions
with drug response. In a separate section, we report the
associations of methylation of the probes and regions in
the candidate genes with response to candidate drug
agents. We highlight their strongest correlations and
also discuss specific genes of particular biological inter-
est. Detailed information about all significant associa-
tions is provided in Supplementary Tables3, 4, 5, 6, 7
and 8. Additional details are provided in Supplementary
Data1, 2, 3 and 4.

Association of DNA methylation of probes and gene
regions with drug response at the epigenome-wide level
of significance
Spearman correlation analysis between the beta-values
of methylation probes that passed QC and SNP filtering
and log(IC50) of drug agents identified 294 strong corre-
lations with p < 9.42 × 10Š8; all of them had Spearman
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correlation coefficient |ρ| > 0.6 (Supplementary Tables3
and 4). The summary of genes containing the top probe
correlations with drug agents (p < 10Š8) is presented in
Table 1. Table 2 provides the list of significant (pFDR <
0.05) and nearly significant (pFDR < 0.1) gene regions as-
sociated with drug response.

The strongest probe correlation satisfied the
Bonferroni-adjusted threshold for multiple testing of EPIC
array probes with 412 agents (pO < 2.29 × 10Š10). It in-
volved the probe cg13178916 in the body ofSNED1and
resistance to the histone deacetylase (HDAC) inhibitor
4SC-202 (ρ = 0.6927,pO = 1.16 × 10Š10; Table1). Due to
similar mechanisms of action of various agents, their asso-
ciations with DNA methylation are likely not independent,
and the Bonferroni threshold is likely to be excessively
stringent. When using pO < 9.42 × 10Š8, the probe
cg13178916, which had the range of beta-values from
0.096 to 0.843, was also associated with microtubule-
disruptive agents BAL-101553 and vinblastine (Supple-
mentary Tables3 and 4; Supplementary Data1). Even
though other SNED1 probes did not satisfy the signifi-
cance threshold for multiple testing, 52 probes were asso-
ciated with resistance to 4SC-202 withpO < 0.05,
including 44 probes withpO < 0.01 (ρ � 0.3197; Supple-
mentary Data 2A). The probes cg10717312 and
cg07644939, located immediately adjacent to cg13178916,
were among the 7 probes most strongly associated with
4SC-202 (pO < 5 × 10Š5, ρ � 0.4935; Supplementary Data
1 and 2A). SNED1, a Sushi, Nidogen, and EGF-like Do-
main 1 extracellular matrix protein, is associated with pro-
gression and metastasis of mammary carcinomas and with
poor outcomes in ERŠ/PRŠ breast cancer [49]. Deletion of
the chromosomal region 2q37.3 containingSNED1is a re-
curring event in cancer, and in ovarian cancer cell lines, it
was associated with resistance to the HDAC inhibitor vor-
inostat [47]. Similar to 4SC-202, multipleSNED1probes
were weakly associated with resistance to vorinostat (Sup-
plementary Data2B). Methylation of cg13178916 was
weakly positively associated with transcript expression
(Spearmanρ = 0.2178; Table1; Supplementary Table4).
Expression of the SNED1 transcript NM_001080437
(Affymetrix cluster ID 2536071) was weakly but signifi-
cantly associated with multiple HDAC inhibitors, although
its association with resistance 4SC-202 and vorinostat was
weak and did not reach statistical significance (Supple-
mentary Data2C). The number of cell lines withSNED1
deletion in our data was insufficient to derive any conclu-
sions about its association with drug response or DNA
methylation (Supplementary Data2D).

Correlation of the probe cg00870242 inC8orf74,
which encodes an uncharacterized protein, with BIM-
46187, an inhibitor of heterotrimeric G-protein signal-
ing, was the second strongest among probes (pO = 6.47
× 10Š10, ρ = Š 0.6721; Table1; Supplementary Tables2,

3 and 4). In total, 4 probes inC8orf74were associated
with response to BIM-46187 withpO < 9.42 × 10Š8

(Supplementary Table 3; Supplementary Data 2D).
C8orf74 regions were also significantly (pFDR = 0.0145
for the 5� UTR and first exon) or nearly significantly
(pFDR = 0.053 for TSS200) associated with response to
BIM-46187 (ρ < Š 0.645, Table2).

Correlation of TREX1methylation with sensitivity to R-
547 was the third strongest association among probes (pO

= 9.39 × 10Š10, ρ < Š 0.6674; Table1; Fig.1; Supplementary
Tables 3 and 4; Supplementary Data3 and 4). TREX1,
which encodes the 3� exonuclease I (DNase III), is upregu-
lated after treatment of malignant cells with several cat-
egories of DNA damaging agents or after UV light
exposure [50–52]. TREX1 has been associated with cancer
cell sensitivity to DNA-damaging agents and with DNA re-
pair or DNA degradation in apoptotic cells after drug ex-
posure [50–52]. Using pO < 9.42 × 10Š8, multiple TREX1
probes were associated with the CDK inhibitor R-547; the
Aurora kinase inhibitors AZD-1152, SCH-1473759, SNS-
314, and TAK-901; the Vertex ATR inhibitor Cpd 45,
which affects the DNA damage response pathway; and
vinorelbine which disrupts the mitotic spindle (Table1;
Supplementary Tables3 and 4). Increased methylation of
TREX1regions was negatively associated with sensitivity to
R-547, TAK-901, and the Vertex ATR inhibitor Cpd 45
(pFDR < 0.1; Table2; Figs.1 and 2). Methylation of the first
exon of TREX1was associated with response to digoxin,
the kinesin spindle protein (KSP) inhibitor ARRY-520
(isomer B), and the KSP/Eg5 inhibitor ARQ-621 when
using a less stringent threshold ofpFDR < 0.15 (Š 0.5999� ρ
� Š 0.5811, 1.02 × 10Š7 � pO � 3.12 × 10Š7, 0.1112� pFDR

� 0.1396; Supplementary Table5). Methylation of the
upstream regions and gene body was strongly negatively
associated withTREX1expression (Spearmanρ = Š 0.350,
pO = 0.0394 for TSS1500;ρ = Š 0.692,pO = 4.14 × 10Š6

for TSS200;ρ = Š 0.842,pO = 2.23 × 10Š10 for the 5�UTR;
ρ = Š 0.825,pO = 1.07 × 10Š9 for exon 1; andρ = Š 0.779,
pO = 3.54 × 10Š8 for the gene body). Methylation of the 3�
UTR was not associated with expression (ρ = Š 0.037,pO =
0.8348). As a corollary to the strong negative correlation
between methylation of most of theTREX1 regions and
expression, increasedTREX1 expression was strongly
associated with resistance to many agents, e.g., digoxin,
ARQ-621, SNS-314, R-547, AZD-1152, vinorelbine, SCH-
1473759, TAK-901, Vertex ATR inhibitor Cpd 45,
and ARRY-520 isomer B (0.440� r � 0.582, 0.0002� pO

� 0.0107; several correlations are presented in Fig.1).
Associations ofTREX1promoter methylation and ex-

pression with log(IC50) of vinorelbine were validated in
SCLC cell lines from the CCLE and GDSC datasets (Š
0.6506� Spearmanρ � Š 0.4275, 0.0006� pO � 0.0207 for
significant correlations of various measures ofTREX1
promoter methylation and log(IC50) of vinorelbine from
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Fig. 1 (See legend on next page.)
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